Interpreting model discovery and testing generalization to a new dataset
نویسندگان
چکیده
Automated techniques have proven useful for improving models of student learning even beyond the best human-generated models. There has been concern among the EDM community about whether small prediction improvements matter. We argue that they can be quite significant when they are interpretable and actionable, but the importance of generating meaningful, validated, and generalizable interpretations from machine-model discoveries has been under-emphasized in educational data mining. Here, we interpret a Learning Factors Analysis model discovery from a geometry dataset to suggest that students experienced difficulty applying the square root operation in circlearea backward problem steps. We then sought to validate and generalize this interpretation in the context of a completely novel dataset. Results indicated that our interpretation of the small, automated prediction improvement not only held up in the context of a novel dataset but also generalized to new types of problems that didn’t exist in the original dataset. We argue that identifying cognitive interpretations of automated model discoveries and assessing the generalizability of such interpretations are critical to translating those model discoveries to concrete improvements in instructional design.
منابع مشابه
شناسایی نوع و مدل وسیله نقلیه با استفاده از مجموعه بخشهای متمایزکننده
In fine-grained recognition, the main category of object is well known and the goal is to determine the subcategory or fine-grained category. Vehicle make and model recognition (VMMR) is a fine-grained classification problem. It includes several challenges like the large number of classes, substantial inner-class and small inter-class distance. VMMR can be utilized when license plate numbers ca...
متن کاملLong-term Iran's inflation analysis using varying coefficient model
Varying coefficient Models are among the most important tools for discovering the dynamic patterns when a fixed pattern does not fit adequately well on the data, due to existing diverse temporal or local patterns. These models are natural extensions of classical parametric models that have achieved great popularity in data analysis with good interpretability.The high flexibility and interpretab...
متن کاملBreast Cancer Risk Assessment Using adaptive neuro-fuzzy inference system (ANFIS) and Subtractive Clustering Algorithm
Introduction: The adaptive neuro-fuzzy inference system (ANFIS) is a soft computing model based on neural network precision and fuzzy decision-making advantages, which can highly facilitate diagnostic modeling. In this study we used this model in breast cancer detection. Methodology: A set of 1,508 records on cancerous and non-cancerous participant’s risk factors was used. First,...
متن کاملBreast Cancer Risk Assessment Using adaptive neuro-fuzzy inference system (ANFIS) and Subtractive Clustering Algorithm
Introduction: The adaptive neuro-fuzzy inference system (ANFIS) is a soft computing model based on neural network precision and fuzzy decision-making advantages, which can highly facilitate diagnostic modeling. In this study we used this model in breast cancer detection. Methodology: A set of 1,508 records on cancerous and non-cancerous participant’s risk factors was used. First,...
متن کاملThe False Discovery Rate in Simultaneous Fisher and Adjusted Permutation Hypothesis Testing on Microarray Data
Background and Objectives: In recent years, new technologies have led to produce a large amount of data and in the field of biology, microarray technology has also dramatically developed. Meanwhile, the Fisher test is used to compare the control group with two or more experimental groups and also to detect the differentially expressed genes. In this study, the false discovery rate was investiga...
متن کامل